CHM 1025C CPS-2

<u>Instructor:</u> George W.J. Kenney, Jr., Professor of Chemistry <u>17-Feb-2009</u> West

NO CREDIT IF YOU: Fail to put in the Units & Properly Round, Fail to show ALL math work,

PRINT	YOUR NAME on the line											
(1 pt)		Your start time on this	test									
(1 pt)		Your finish time on this	s test:									
(1 pt)		Time it took you to do	this test:									
Solve The	Following (12 pts each)	Test Ma	Test Max Grade: 101									
1. This la	b deals with what type of read	ctions?										
2. Give a formulae.	n example of one reaction tha	t you are going to run tod	lay. Give the complet	e balanced reaction								
3. What i	s the name of the species if it	is present on both sides of	f a reaction?									
4. What v	will happen if you add Silver I	Nitrate and Sodium Chlor	ride to a test tube of w	ater?								
5. Will yo	ou be using the Bunsen Burne	r for today's experiment?	?									
6, 7, 8	1234.5678 123.45 + 12.3	1234.5678 <u>x 1</u>	1234.5678 <u>x 1.0</u>									
(1 pt) D	id you check for Significant D	ligits and Scientific Notati	ion? Yes	No								
(1 pt) D	id you check for Proper Units	Yes	No									
•	ou rate this test from 1 to 10 Easy, can do it with my eyes c	losed, 10= Very Very Diff	ficult, could not do an	y of the problems								

Chem 1025C 1 of 2 Spot Quiz #2

1	1 H 1.008	2A											3A	4A	5A	6A	7A	2 He 4.003
2	3 Li 6.941	4 Be 9.012											5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
3	11 Na 22.99	12 Mg 24.31	_										13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 CI 35.45	18 Ar 39.95
4	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
6	55 Cs 132.9	56 Ba 137.3	57 La* 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 T1 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222)
7	87 Fr (223)	88 Ra 226	89 Ac** (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (264)	108 Hs (265)	109 Mt (268)	110 Ds (271)	111 Rg (272)	112 Uub	113 Uut	114 Uuq	115 Uup			